Facile Synthesis and Acetone Sensing Performance of Hierarchical SnO2 Hollow Microspheres with Controllable Size and Shell Thickness

نویسندگان

  • Jiao Li
  • Pinggui Tang
  • Jiajun Zhang
  • Yongjun Feng
  • Ruixian Luo
  • Aifan Chen
  • Dianqing Li
چکیده

A facile method to prepare SnO2 hollow microspheres has been developed by using SiO2 microspheres as template and Na2SnO3 as tin resource. The obtained SnO2 hollow microspheres were characterized by X-ray diffraction, scanning electron microscopy, high resolution and transmission electron microscopy, and Brunauer−Emmett−Teller analysis, and their sensing performance was also investigated. It was found that the diameter of SnO2 hollow microspheres can be easily controlled in the range of 200−700 nm, and the shell thickness can be tuned from 7.65 to 30.33 nm. The sensing tests showed that SnO2 hollow microspheres not only have high sensing response and excellent selectivity to acetone, but also exhibit low operating temperature and rapid response and recovery due to the small crystal size and thin shell structure of the hollow microspheres, which facilitate the adsorption, diffusion, and reaction of gases on the surface of SnO2 nanoparticles. Therefore, the SnO2 hollow microsphere is a promising material for the preparation of high-performance gas sensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acetone sensing properties of hierarchical WO3 core-shell microspheres in comparison with commercial nanoparticles

In this work, hierarchical WO3 core-shell microspheres were synthesized via a facile template-free precipitation method. Gas sensing properties of the synthesized powder to acetone and some other volatile organic compounds were comparatively investigated with commercial WO3 nanoparticles. The synthesized and commercial powders were characterized by X-ray diffraction, scanning electron microscop...

متن کامل

Acetone sensing properties of hierarchical WO3 core-shell microspheres in comparison with commercial nanoparticles

In this work, hierarchical WO3 core-shell microspheres were synthesized via a facile template-free precipitation method. Gas sensing properties of the synthesized powder to acetone and some other volatile organic compounds were comparatively investigated with commercial WO3 nanoparticles. The synthesized and commercial powders were characterized by X-ray diffraction, scanning electron microscop...

متن کامل

Assembled hollow and core-shell SnO2 microspheres as anode materials for Li-ion batteries

SnO2 microspheres with controllable morphology were prepared via a hydrothermal-annealing method. The SnO2 morphology can be tuned by using AlOOH sol and g-Al2O3 as additive. The hollow SnO2 microspheres with incomplete core-shell structure prepared with small amount of g-Al2O3 presented the best cycling performance in Li-ion battery, exhibiting a specific capacity of 374.2 mAh g 1 up to 100 cy...

متن کامل

Core–shell structured hollow SnO2–polypyrrole nanocomposite anodes with enhanced cyclic performance for lithium-ion batteries

0.1016/j.nanoen.2 lsevier Ltd. All rig thors. : [email protected] Abstract Core–shell structured hollow SnO2–polypyrrole (PPy) nanocomposites (SnO2@PPy) with excellent electrochemical performance were synthesized using a hydrothermal method followed by an in situ chemical-polymerization route. The thickness of the polymerized amorphous PPy coating covering on the hollow SnO2 microspheres is abou...

متن کامل

Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids.

In this study, novel porous hollow Ni/SnO2 hybrids were prepared by a facile and flexible two-step approach composed of solution reduction and subsequent reaction-induced acid corrosion. In our protocol, it can be found that the hydrothermal temperature exerts a vital influence on the phase crystal and morphology of Ni/SnO2 hybrids. Notably, the Ni microspheres might be completely corroded in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016